Applications with keyword: Fast reaction

Application 1030

The performance of a SpinChem® rotating bed reactor (RBR) in the treatment of highly viscous solutions was compared to that of a conventional stirred tank reactor (STR). Both reactor set-ups were used for the extraction of Allura red dye from a glycerol-dye mixture using an ion exchange resin. The RBR removed 10 times the amount of dye in just over 40 % of the time, compared to the STR. This comparison underlines the efficient mixing and clever design of the SpinChem® RBR, as well as the broad spectrum of applications for which this technology is highly relevant.

  • +
    Details

    Conditions: Glycerol (80%, wt) was mixed with dH2O and Allura red (20 mg/L). The mixture was kept at a temperature of 10°C to achieve a viscosity of around 0.116 · 10¯³ m²/s. A SpinChem® RBR S3 was filled with 41.6 g macroporous strong base anion exchange resin (Purolite® A500 MB Plus) and spun in 1 L of the mixture at 400 rpm. For the STR experiment, 41.6 g of the same ion exchange resin was suspended in 1 L of the viscous dye solution, and stirred by means of an impeller at 400 rpm. Samples for absorbance measurements were taken over time and analysed using UV-Vis spectroscopy.

Application L1801

Degradation of the pharmaceutical compound ibuprofen by ozone, was optimized in batch type reactors with and without zeolite based heterogeneous catalysts. The rotating bed reactor technology increased the concentrations of dissolved gas compared to traditional stirred tank reactors and allowed convenient handling of the catalyst particles without any filtration.

  • +
    Details

    Soudabeh Saeid, Pasi Tolvanen, Narendra Kumar, Kari Eränen, Janne Peltonen, Markus Peurla, Jyri-Pekka Mikkola, Andreas Franz, Tapio Salmi
    Applied Catalysis B: Environmental, 230 (2018) 77-90

Application 1024

Comparison of rotating bed reactor (RBR) technology and fixed bed reactor (FBR) column during activated carbon decolourization. The more efficient use of the adsorbent with a SpinChem® RBR enabled completion of the process within 40% of the time at the same material amount or allowed reduction to 50% material while still being able to finish the process within the same time as the FBR.

Application 1008

Accelerated video showing the enhanced adsorption rates of methylene blue onto activated carbon using a rotating bed reactor (RBR) compared to a stirred tank reactor (STR). The RBR decolourized the solution almost twice as fast, did not create any visible fines and required no filtration.

  • +
    Details

    Conditions: Adsorption of methylene blue (100 mg) onto activated carbon (40 mL, 12-40 mesh) placed either in a SpinChem® S311 rotating bed reactor (RBR) or stirred free in solution agitated by a 5 cm impeller, both operated at 800 rpm within a SpinChem® V311 flower-baffled reaction vessel containing 1000 mL water at room temperature. The video is shown at 12x the normal speed. The solution was decolourized after 5 minutes with the RBR, versus close to 10 minutes with the stirred tank reactor (STR). Samples from the RBR set-up required no filtration, but from the STR all samples required filtration through a 45 µm syringe filter for analysis.

Application 1006

Video revealing the efficient mass transfer and resulting shorter reaction time with a rotating bed reactor (RBR) during ion-exchange neutralization of a base. The reaction with the RBR finished 30% faster and left a completely clear solution without any particles.

  • +
    Details

    Conditions: Neutralization of sodium hydroxide (1 M, 200 µL) by cation exchanger Amberlite IRN99 (20 mL) placed either in a SpinChem® S311 rotating bed reactor (RBR) or distributed in solution agitated by a 5 cm impeller, both operated at 800 rpm within a SpinChem® V311 flower-baffled reaction vessel containing 800 mL water with phenolphthalein (20 mg/L). The reaction with RBR finished after 23 s versus 33s for the stirred tank reactor with impeller.

Application 1001

Investigation of how rotational speed influences the efficiency of rotating bed reactors (RBR) for a diversity of processes such as adsorption, neutralization and ammonolysis. It was demonstrated how reaction rates could reach a plateau with the SpinChem® RBR when mass transfer efficiency exceeded reaction speed.

Application brochure

Learn how SpinChem rotating bed reactors (RBR) can eliminate poor mass transfer in heterogeneous reactions during chemical synthesis and biotransformations. Preserve activity and facilitate recycling of solid phases with the RBR. This brochure shows technology and applications.