Application 1029

Effects of channelling on flow rates through rotating bed reactors and fixed bed reactors

The performance and robustness of the SpinChem® rotating bed reactor (RBR) technology was examined and compared to a fixed bed reactor (FBR) using ANSYS Fluent. By means of flow simulations through loosely packed beds, the RBR was found to be extremely robust with respect to the level of packing of the solid phase within, while the FBR was negatively affected by channelling.

Products: SpinChem® RBR S2
  • +

    ANSYS Fluent was used to make simulations of a spinning RBR and a stationary FBR with the same geometry. The simulated bed was in both cases split into two halves so that a loosely packed region could be modelled alongside an optimally packed region. The flow rate determined for the RBR at optimal packing was pumped through the FBR for all degrees of packing. Homogeneous packing was simulated by assigning the region a specific permeability coefficient corresponding to that of an ion exchange resin of uniform particle size. This value served as a reference value for the simulations, and corresponds to a pressure drop of 0.054 bar/m for water at 20°C with a linear velocity of 1 mm/s. Moderate and severe channelling was assigned specific permeability values corresponding to 133% and 200% of that of the reference, respectively.