Application 1021
Automatic loading and unloading of a production scale rotating bed reactor

The separation of a heterogeneous catalyst, an adsorbent, or an ion-exchange resin from a liquid product is a time-consuming unit operation that often makes the use of these materials impractical. The rotating bed reactor is a more efficient technology for deploying catalysts for manufacturing or adsorbents for purification.

Application 1029
Channelling effects common in columns removed with rotating bed reactors

Fixed bed reactors (FBRs), also known as packed bed reactors (PBRs), are frequently used for purification, ion-exchange processes, or heterogeneous catalysis. Though relatively easy to construct, they are tedious to charge with solids in an effective way. A poorly packed FBR is subject to channelling, where passages are formed in the bed. These passages offer less resistance to the liquid, which will preferentially travel through those regions. In this work, the robustness with respect to channelling of a packed bed reactor was compared to a rotating bed reactor (RBR) using computational fluid dynamics (CFD).

Application 1013
High-throughput systems for processing liquid products

As a tool for heterogeneous catalysis, or purification of liquids using materials like activated carbon, the rotating bed reactor provides high throughput capability frequently exceeding traditional technologies.

Application 1042
How large liquid volumes can a rotating bed reactor process?

Large volumes of liquid waste will often accumulate at industrial sites. It may be very time-consuming and resource-intensive to adequately treat these waste streams for release, so the problem often compounds over time.

Application 1016
In situ filling and emptying of rotating bed reactors

Video showing how a SpinChem® rotating bed reactor (RBR) was charged with solid particles, followed by draining and replacing the reaction liquid without escape of solids. Lastly, the solid phase was removed without opening the RBR. This procedure illustrates a concept for automatic handling of solid phases in production scale equipment without opening the reaction vessel.

Application Brochure
Mass transfer revolutionized

The SpinChem rotating bed reactor (RBR) can eliminate poor mass transfer in heterogeneous reactions during chemical syntheses and biotransformations, preserve catalyst activity, and facilitate recycling of solid phases. This brochure presents our technology and its applications.

Application 1032
Rotating bed reactor for immobilized enzymatic reactions

This case study presents a lipase-mediated stereoselective acetylation of a racemic amine in a rotating bed reactor.

Application 1025
Soft alginate beads used in a rotating bed reactor

Stirred vessels tend to damage soft heterogeneous catalysts, like enzymes immobilized in agarose or alginate beads, with activity loss and tedious workup as consequence. In a fixed bed reactor, these materials are easily compressed by the pressure gradient, leading to a loss of flow rate. Overcoming these challenges opens up the possibility to use biocatalysis as a tool for greener processes and more sustainable manufacturing.

Application 1010
Rotating bed reactors completely avoid grinding of molecular sieves

When using of solid-phase catalysts or adsorbents in reactors, the physical degradation of the materials is a common problem. The traditional stirred tank reactor inflicts mechanical damage to the particles, which causes attrition, fines that are difficult to separate, and loss of the functionality of the solid-phase.

Application 1044
Simple scale-up using flexible reactors

Research and development quickly takes new directions, and the requirements on a laboratory may vary with every new project. Limiting yourself to equipment with a narrow scope of conditions and applications may become expensive, since new equipment must be acquired for anything out of scope. With budgets quickly consumed by other projects, the need for new equipment may mean significant delays and a reduced capability to take on emerging opportunities.

Application 1020
Reactor design supported by computational fluid dynamics (CFD)

The performance of a reactor for heterogeneous chemistry depends on the liquid flow it creates, and the mass-transfer rates it can achieve. Simulations help us investigate in high detail how a rotating bed reactor performs in any configuration.

Application 1009
Multistep synthesis or simultaneous extraction simplified in a rotating bed reactor

The synthesis of products, such as active pharmaceutical ingredients (APIs), often involves multiple steps using heterogeneous catalysts or adsorbents. Thus, the simultaneous use of multiple solid phases either during synthesis or downstream processing is frequently highly advantageous.

Laboratory Stand

SpinChem Assembly Guide Video

MagRBR and Stirrer

SpinChem Instruction Video

Rotating Bed Reactor S2

SpinChem Assembly Guide Video

Rotating Bed Reactor S3 and S3+

SpinChem Assembly Guide Video

Rotating Bed Reactor S4, S5 and S14

SpinChem Assembly Guide Video

SpinChem RBR Tips ‘n’ Tricks

SpinChem Instruction Video

Reaction Vessel V2

SpinChem Assembly Guide Video

Application 1040
The importance of baffles in a reactor vessel

Can you use a rotating bed reactor (RBR) in any type of vessel? - Absolutely! Would the performance be higher with baffles in the vessel? - Definitely!

Application 1043
Using a rotating bed reactor in different liquid volumes

Research and development quickly takes new directions, and the requirements on a laboratory may vary with every new project. Limiting yourself to equipment with a narrow scope of conditions and applications may become expensive in the long run. The need for new equipment may inflict delays and affect your capability to take on emerging opportunities.

Application 1051
How the loading of solids influences reaction speed

Sometimes you don’t want to pack the entire rotating bed reactor full with your solid-phase material. Fully loading might simply be wasteful, or you may want to experiment with your reaction conditions. But how does the amount of solids in the rotating bed reactor influence the reaction performance? Can you use only 10% of the full capacity?

Privacy Policy

This website uses cookies to ensure you get the best experience on our website. If you continue browsing, you agree to the privacy policy.