Using enzymes to drive a reaction is often preferred to chemical catalysts. A clear advantage of using enzymes is the high substrate specificity, which generally gives rise to high yields and high reaction rates, as well as products free from unwanted biproducts. Due to both technical and economic benefits, the enzymes used to catalyse reactions are often immobilized on the surface of different insoluble materials. The immobilization will lead to easier recycling, manipulation and separation of the enzyme, as well as an increase in its thermal and operational stability.
The most common applications for immobilized enzymes include esterifications, transesterifications, amidations and the modification of fats and oils. To identify the enzyme best suited for the conversion of a certain substrate, the candidate enzymes are put through a screening process. As the reaction conditions must ensure the stability of the enzyme and substrate, parameters such as solvent, temperature and pH should also be optimized to guarantee a high and pure product yield. In processes including enzyme development, there is also a need for screening of different methods of immobilization, as well as potential carrier materials, to ensure preserved enzyme activity.
As evaluation is generally needed for several different factors when developing an enzyme-catalysed process, easy screening of multiple reaction parameters will allow for easier and faster design of experiments. By being able to examine several parameters simultaneously in a multidimensional parameter space, the process can quickly be optimized. Through this, high parameter robustness can be achieved, thus also providing the process with high reproducibility, validity and reliability.
The SpinChem® magnetic rotating bed reactor (MagRBR), carries 0.5 mL solid phase resin, and is designed for screening of biocatalysts and biocatalytic reactions in liquid phase volumes of 5-100 mL. The SpinChem® MagRBR retains the solid phase particles, and conducts the mass transfer by impelling the movement of the liquid phase.
No preparations are required prior to implementing the MagRBR in screening applications, and the downstream processing is greatly minimized or completely cut out due to the lack of filtration steps. The SpinChem® MagRBR is delivered pre-packed with a variety of resins for catalysis and adsorption screening. As the SpinChem® MagRBR is spun by means of magnetic coupling, solution is continuously passed through the packed bed within, allowing the reactants in the different phases to interact. By running the reactions in minimized liquid volumes, the amount of enzyme and substrate needed is reduced, thus significantly increasing the rate of enzyme development. For even further streamlined screening, the SpinChem® magnetic stirrer with multiple positions can be used to run several reactions in parallel.
Katarzyna Szymańska, Klaudia Odrozek, Aurelia Zniszczoł, Wojciech Pudło, and Andrzej B. Jarzębski Chem. Eng. J., 2017, 315, pp. 18-24.
Automation of large-scale processes is often a requirement for economically viable chemical processes. The benefits of scale are best harvested at high throughputs and 24/7 operation. This leads to the demand for process automation, and the elimination of hands-on work.
Enzyme screening is an important step in the development of a biocatalytic application. The behaviour of the biocatalyst is often hard to predict, meaning that different combinations of materials and reaction conditions need to be tested.
This application note demonstrates how the combination of a SpinChem MagRBR custom-filled with heterogenous Pd(II)-catalyst and the controlled conditions in a Mettler-Toledo EasyMax™ 102 Advanced Synthesis Workstation allows for quick and convenient generation of C-C coupled products. Keywords: Chemical catalysis, Easy handling, Mettler-Toledo
Finding the optimal chemistry and solid-phase material for immobilization of enzymes relies heavily on trial and error. The right resin will ensure satisfactory immobilization yield, as well as high activity and stability of the enzyme.
S. Lokesha, Y. S. Ravi Kumar, P. S. Sujan Ganapathy, Prashant Gaur, and H. M. Arjun 3 Biotech, 2021, 11, 410.
Immobilized catalyst recycling using a SpinChem® rotating bed reactor (RBR) and a Mettler-Toledo EasyMax™ 102 Advanced synthesis workstation. The process proved very time efficient as no filtration steps were needed between cycles, or for the samples extracted for analysis during each run. Washing of the resin between runs was fast, simple and robust, without running the risk of material loss. Keywords: Biotransformation, Immobilized enzymes, Mettler-Toledo, Organic molecules, Preserved activity, Quick recycling
Poster on a case study of applying the rotating bed reactor for the lipase-mediated stereoselective acetylation of a racemate amine as a model reaction for the manufacturing of pharmaceutical building blocks. The results showed that enzyme recycling and synthesis scale up was easy to achieve with preserved yield, enantioselectivity and catalytic activity. Keywords: Biotransformation, Easy handling, Immobilized enzymes, Quick recycling, Seamless scaleup
In co-operation with ZHAW, two students screened various types and sizes of activated carbon using the SpinChem® RBR S2. Five different carbons were screened by decolorizing solutions of methylene blue in distilled water. The decolorization process was monitored using inline UV-Vis spectrometry (PAT). The results show the importance of choosing the correct media for your application. In this case of activated carbon, the source and type of the activation was shown to have a major impact on performance. Keywords: Activated carbon, Decolouration, Fast reaction, Rapid screening, Technology
The stable reaction environment in the EasyMax™ 102 Advanced synthesis workstation and the high flow rates through the SpinChem® RBR allowed for quick and convenient screening of different immobilized lipases to find the enzyme most suitable for further reaction optimization. Keywords: Biotransformation, Immobilized enzymes, Mettler-Toledo, Organic molecules, Rapid screening
The SpinChem rotating bed reactor (RBR) has been proven to be a time and labour-efficient tool in the screening of biocatalysts. In this application note, six different immobilized lipases were screened in parallel for the esterification of lauric acid into propyl laurate using the pre-packed MagRBR Lipase screening kit.
Research and development quickly takes new directions, and the requirements on a laboratory may vary with every new project. Limiting yourself to equipment with a narrow scope of conditions and applications may become expensive, since new equipment must be acquired for anything out of scope. With budgets quickly consumed by other projects, the need for new equipment may mean significant delays and a reduced capability to take on emerging opportunities. Many heterogeneous processes (e.g. adsorption or catalysis) are made faster by increasing the solid-to-liquid ratio. Studying scale-up effects can also help to predict full-scale performance. For these reasons it’s wise to invest in equipment that can handle different operating conditions such as liquid volume, solids loading, pH and temperature. The RBR S3 Plus is the most modular rotating bed reactor for laboratory use. Made from two stacked rotating bed reactors, the S3 Plus quickly converts to a single RBR S3 for use with smaller liquid volumes. When used in the dedicated glass reactor system, this yields an operating range of 250 - 1500 mL of liquid and 0 - 140 mL of solids. This application note investigates the effect of solids loading on the reaction rate of two applications: the adsorption of a dye and a biocatalytic esterification reaction. These two reactions are mass-transport limited and relatively fast. In the first case, an RBR S3 and an RBR S3 Plus were filled with 50 mL and 100 mL respectively of the ion-exchange resin Purolite® NRW1160. Methylene blue was dissolved in water, and the solution was decolorized by spinning an RBR at 600 RPM (reaction conditions in the details below). The results were clear; each case followed 1st order kinetics with a rate constant for the RBR S3 Plus that was twice that of the RBR S3. Note that the solid-to-liquid ratio for the RBR S3 Plus was also twice that of the RBR S3. For the enzymatic esterification, the same rotating bed reactors (RBR S3 and RBR S3 Plus) were filled with 40 mL and 80 mL respectively of the biocatalyst Purolite® immo PS. The rotating bed reactors were used in separate reactions in mixtures of lauric acid, 1-propanol and water. Also in this case the reaction rate was proportional to the solid-to-liquid ratio, yielding twice the productivity with the RBR S3 Plus compared to the RBR S3. The conclusion is that with a rotating bed reactor you are making the most out of the solid-phase. Doubling the amount of catalyst or adsorbent will generally double the reaction rate constant, which makes scaling up straightforward. Contact us today to discuss how we can scale your process.
Hydrogenation reactions using hydrogen gas are usually efficient and clean. Drawbacks are the safety issues of handling hydrogen gas, need for reactors made for pressurized reactions, and the necessity of vigorous stirring to make these solid-liquid-gaseous reactions work well.
This website uses cookies to ensure you get the best experience on our website. If you continue browsing, you agree to the privacy policy.