Application 1015
A remote controlled raft for treatment of surface water using rotating bed reactor technology

Time lapse video demonstrating a prototype vehicle capable of processing two cubic metres of coloured water within five minutes. The raft was carrying two rotating bed reactors that neutralized the basic surface water in a square pond by ion exchange.  Keywords: Cleantech, Ion exchange, Seamless scaleup, Technology

Application 1008
Activated carbon decolorization, fast and without filtration

Activated carbon is a common choice for removing impurities or capturing compounds from a product batch. However, the carbon may itself foul the product and be difficult to separate. The rotating bed reactor offers a clean way to deploy activated carbon that removes the need for time-consuming filtration and extends the lifetime of the solid phase.  

Application 1007
Automatic processes for efficient production

Automation of large-scale processes is often a requirement for economically viable chemical processes. The benefits of scale are best harvested at high throughputs and 24/7 operation. This leads to the demand for process automation, and the elimination of hands-on work.

Application 1035
Column vs RBR

A performance comparison between a column (fixed bed reactor) and rotating bed reactor (RBR) for de-ionizing 1000 L of tap water. Using best-in-class standard protocols for both technologies, we tested which technology could de-ionize to a desired endpoint conductivity value the quickest. The result show that the RBR is significantly faster, reaching 3.7 times faster a conductivity level of 0.15 µS/cm compared to the column.  Keywords: Cleantech, Deionization, Fast reaction, Technology  

Application 1024
Decolourization more efficient in rotating bed reactor than fixed bed reactor

A fixed bed reactor (FBR), also known as a packed bed reactor or column, is a traditional technology for processes such as adsorption or heterogeneous catalysis. Achieving the required level of purification or conversion means running the liquid through the reactor at a sufficiently low flow rate, and the throughput of a fixed bed reactor is therefore often limited.

Application 1006
Rotating bed reactor faster than stirred tank reactor for a mass transfer limited reaction

Mass transfer limited reactions can create problems for applications like the synthesis of chemical products or the manufacture of active pharmaceutical ingredients. Poor yields, high side-product formation or impractically long reactions are potential issues. Efficient reactor design can greatly improve the mass transfer and remove the limitation to a minimum.

Application 1004
High-viscosity applications made faster

Liquids with high viscosity create problems for heterogeneous applications in traditional reactors. Packed bed reactors (columns) suffer from huge back pressures, and stirred tank reactors (STR) exhibit reduced reaction rates due to poor mixing. Both issues lead to longer processing times and expensive operations.

Application 1031
Decolourization in an IBC tank using the ProRBR IBC add-on

Adsorption of methylene blue (3 g, 5 mg/L) onto Purolite® NRW1160 (4.2 L) placed in a SpinChem® S5 RBR operated at 147 rpm. The SpinChem® S5 RBR was placed within a 600 L IBC tank, using the ProRBR IBC add-on, where the tank was filled with water. The data was acquired using a UV-VIS spectrophotometer.  

Application 1030
Viscous solutions decolourized using a rotating bed reactor and a stirred tank reactor

Decolorization, pesticide remediation, catalysis, and many other applications involve dealing with viscous liquid that needs to be modified in some way. The rotating bed reactor presents an efficient way to treat viscous liquids, without the challenges of conventional reactors.

Application 1034
Decolourization using 79 L of activated carbon in a 7000 L vessel

A large scale decolourization experiment using the SpinChem® rotating bed reactor (RBR) S100, packed with 79 L of activated carbon. The vessel contained 7000 L of water with added methylene blue dye. In under 40 minutes, 95% of the initial concentration of methylene blue was removed from the water, which shows that the RBR S100 can achieve fast reaction times in large scale processes.  Keywords: Activated carbon, Cleantech, Decolouration, Fast reaction

Application 1026
Decolourization with activated carbon in a production scale rotating bed reactor

The rotating bed reactor (RBR) is a clean way to use activated carbon for purification, which eliminates the need for time-consuming filtration and extends the lifetime of the solid phase. It is available on scales ranging from milliliters to hundreds of cubic meters and offers faster decolorization, elimination of filtration, and extended adsorbent lifetime.

Application 1033
Deionizing 7000 L of tap water using the SpinChem® RBR S100

The SpinChem® rotating bed reactor (RBR) S100, with a solid phase capacity of 100 L, was used to deionize 7000 L of tap water. The RBR S100 was operating at 160 rpm and filled with 36.5 L of mixed bed ion exchange resin. The results show that the RBR S100 can efficiently process large liquid volumes. As shown by the successful deionization, the performance of the RBR remains high even when it is partially filled, which proves the extreme robustness of the RBR technology.  Keywords: Ion exchange, Seamless scaleup, Technology  

Application 1003
Improving reactions in emulsions using a rotating bed reactor

When working with an emulsion (and particularly with a heterogeneous catalyst) the mass transfer between the phases is critical. Insufficient mixing leads to lower interfacial area per volume, and in turn to poor mass transfer across the phases.

High-throughput systems for processing liquid products

As a tool for heterogeneous catalysis, or purification of liquids using materials like activated carbon, the rotating bed reactor provides high throughput capability exceeding traditional technologies.

Application 1042
How large liquid volumes can a rotating bed reactor process?

Large volumes of liquid waste will often accumulate at industrial sites. It may be very time-consuming and resource-intensive to adequately treat these waste streams for release, so the problem often compounds over time.

Application 1037
In-tank deployment of large scale rotating bed reactor

To further demonstrate the use of RBR:s at process scale, a decolorization using ion exchange resin was performed at 7500 L scale. An RBR S14 was filled with strongly acidic cationic resin NRW1160 from Purolite and used to remove blue dye from an aqueous solution in a stainless steel tank of 7500 L volume. The solid-to-liquid ratio is a fraction of percent, showing the efficiency of the RBR technique for convectional mass-transfer and global mixing. The RBR was spun at 340 rpm while the transmittance at 663 nm was monitored for ca 4 h at which point the transmittance had recovered the baseline value for colorless de-ionized water.   Keywords: Ion exchange, Cleantech, Nuclear, Scale-up  

Application 1001
How to find the optimal rotational speed when using a rotating bed reactor

Many heterogeneous processes are limited by mass transfer at typical laboratory or industrial conditions. When using a rotating bed reactor, the mass transfer is most easily controlled using the rotational speed.

Application 1010
Rotating bed reactors completely avoid grinding of molecular sieves

When using of solid-phase catalysts or adsorbents in reactors, the physical degradation of the materials is a common problem. The traditional stirred tank reactor inflicts mechanical damage to the particles, which causes attrition, fines that are difficult to separate, and loss of the functionality of the solid-phase.

Application 1009
Multistep synthesis or simultaneous extraction simplified in a rotating bed reactor

The synthesis of products, such as active pharmaceutical ingredients, often involve multiple steps using heterogeneous catalysts or adsorbents. The need often arises for simultaneous use of multiple solid phases.

Application 9003
Simultaneous Selective Decolouration – Illustrating a Concept for Cascade Reactions

Two dyes were selectively extracted onto different adsorbents within the same run using a SpinChem® rotating bed reactor (RBR) and an EasyMax™ 102 Advanced synthesis workstation. This experiment illustrates performing cascade reaction for one-pot multi-step synthesis.  Keywords: Cleantech, Decolouration, Extraction, Ion exchange, One-pot multistep, Organic molecules, Polymeric resin, Technology

Treatment of 7.5 m3 with a 50L Plug-in system

A small rotating bed reactor (RBR) system deployed in an external loop to the customer’s regular reaction vessel. Even though RBR technique has been identified as offering advantages for a particular process, deploying it in existing an existing reaction vessel may prove difficult for practical reasons. This is were “plug-in” mode deployment of the RBR can offer a solution. The RBR and associated vessel is attached in an external loop by inlet and outlet connections to the regular vessel. The “plug-in” RBR system is typically small compared to the regular vessel. Alternatively, the RBR system can be deployed in a vessel → RBR → 2nd vessel mode. A proof-of-concept demonstration of an RBR in “plug-in” mode by a decolorization. The volume of the “plug-in” vessel is ca 0.7% of the regular vessel it is attached to.

Application 9004
Treatment of Viscous Solutions – Simple Extraction and In-line Monitoring

Blue dye was removed from a highly viscous liquid using a SpinChem® RBR S2 in an EasyMax™ 102 Advanced Synthesis Workstation. Monitoring of the reaction was easily recorded as no freely suspended ion exchange resin beads or resin debris interfered with the readings. This demonstrates that the RBR technology is extremely well suited for in-line monitoring. The viscosity of the solution was determined to ca 230 cP at 25°C, showing that it is possible to absorb dye even from a highly viscous solution.  Keywords: Decolouration, Extraction, Ion exchange, Mettler-Toledo, Viscous solutions

Application 1051
How the loading of solids influences reaction speed

Sometimes you don’t want to pack the entire rotating bed reactor full with your solid-phase material. Fully loading might simply be wasteful, or you may want to experiment with your reaction conditions. But how does the amount of solids in the rotating bed reactor influence the reaction performance? Can you use only 10% of the full capacity?

Privacy Policy

This website uses cookies to ensure you get the best experience on our website. If you continue browsing, you agree to the privacy policy.