Accelerated video showing the enhanced adsorption rates of methylene blue onto activated carbon using a rotating bed reactor (RBR) compared to a stirred tank reactor (STR). The RBR decolourized the solution almost twice as fast, did not create any visible fines and required no filtration. Keywords: Activated carbon, Decolouration, Fast reaction, Organic molecules, Simple cleanup, Technology
Time lapse video illustrating how an externally connected rotating bed reactor (RBR) can pump and process large liquid volumes by the convective flow created by the spinning RBR. The concept enables handling of volumes at least 10-100 times larger than the external vessel, thus facilitating installation of RBR technology into existing plant equipment. Keywords: Activated carbon, Continuous flow, Decolouration, Organic molecules, Seamless scaleup, Technology
Video showing the principle of an automated rotating bed reactor system capable of filling a solution, neutralizing it by ion exchange and draining it. By microcomputer control, unattended semi-continuous batch processing was accomplished for many cycles until the ion exchanger was completely saturated. Keywords: Automation, Ion exchange, Seamless scaleup, Technology
Time lapse video showing how straightforward it is to use immobilized enzymes in a rotating bed reactor. A substrate giving a yellow coloured product was used to follow the reaction progress of an ester hydrolysis by an immobilized lipase. This substrate is commonly used to screen and characterize lipases.
A tutoral review taking a holistic approach to the engineering of biotransformations utilising isolated enzymes. The authors highlighted SpinChem® RBR technology benefits and wrote; “… in addition to protecting the biocatalyst from shear forces caused by the stirrer, it greatly accelerates mass transfer, thus affording substantially higher reaction rates and creating the possibility to use much smaller reactors”. Keywords: Biotransformation, Immobilized enzymes, Organic molecules, Review, Scientific literature
A performance comparison between a column (fixed bed reactor) and rotating bed reactor (RBR) for de-ionizing 1000 L of tap water. Using best-in-class standard protocols for both technologies, we tested which technology could de-ionize to a desired endpoint conductivity value the quickest. The result show that the RBR is significantly faster, reaching 3.7 times faster a conductivity level of 0.15 µS/cm compared to the column. Keywords: Cleantech, Deionization, Fast reaction, Technology
Comparison of rotating bed reactor (RBR) technology and fixed bed reactor (FBR) column during activated carbon decolourization. The more efficient use of the adsorbent with a SpinChem® RBR enabled completion of the process within 40% of the time at the same material amount or allowed reduction to 50% material while still being able to finish the process within the same time as the FBR. Keywords: Activated carbon, Decolouration, Fast reaction, Organic molecules, Purification, Technology
Video revealing the efficient mass transfer and resulting shorter reaction time with a rotating bed reactor (RBR) during ion-exchange neutralization of a base. The reaction with the RBR finished 30% faster and left a completely clear solution without any particles. Keywords: Fast reaction, Ion exchange, Technology
Log-log plot of how viscosity affects the reaction time for a mass transfer limited reaction at a fixed rotational speed of a rotating bed reactor (RBR). The RBR behaved very predictably and delivered reaction times that increased linearly with reaction media viscosity up to at least 500 mPa·s. Keywords: Ion exchange, Organic molecules, Technology, Viscous solutions
The performance of a SpinChem® rotating bed reactor (RBR) in the treatment of highly viscous solutions was compared to that of a conventional stirred tank reactor (STR). Both reactor set-ups were used for the extraction of Allura red dye from a glycerol-dye mixture using an ion exchange resin. The RBR removed 10 times the amount of dye in just over 40 % of the time, compared to the STR. This comparison underlines the efficient mixing and clever design of the SpinChem® RBR, as well as the broad spectrum of applications for which this technology is highly relevant. Keywords: Decolouration, Fast reaction, Ion exchange, Technology, Viscous solutions
Adsorption of methylene blue (3 g, 5 mg/L) onto Purolite® NRW1160 (4.2 L) placed in a SpinChem® S5 RBR operated at 147 rpm. The SpinChem® S5 RBR was placed within a 600 L IBC tank, using the ProRBR IBC add-on, where the tank was filled with water. The data was acquired using a UV-VIS spectrophotometer.
A large scale decolourization experiment using the SpinChem® rotating bed reactor (RBR) S100, packed with 79 L of activated carbon. The vessel contained 7000 L of water with added methylene blue dye. In under 40 minutes, 95% of the initial concentration of methylene blue was removed from the water, which shows that the RBR S100 can achieve fast reaction times in large scale processes. Keywords: Activated carbon, Cleantech, Decolouration, Fast reaction
Video showing how to promote holiday spirit by seasoning mulled wine using a rotating bed reactor. Assorted spices and sugar were used to transform white wine mixed with a clear liquor into a festive and flavourful Christmas drink. The temperature of the mixture was kept at 70°C and the outside temperature at -6°C, using a heating jacket and a northern latitude, respectively. Keywords: Behind the scenes
Illustrative video showing how a phenolic colourant is deprotonated and extracted from an organic to an aqueous solvent. Using SpinChem® RBR in a flower-baffled reaction vessel created fine emulsion droplets resulting in effective phase-transfer between the two liquids and the solid phase. Keywords: Immiscible liquids, Ion exchange, Organic molecules, Technology
Learn how SpinChem rotating bed reactors (RBR) can eliminate poor mass transfer in heterogeneous reactions during chemical synthesis and biotransformations. Preserve activity and facilitate recycling of solid phases with the RBR. This brochure shows technology and applications. Keywords: Biotransformation, Brochure, Fast reaction, Immobilized enzymes, Molecular sieve, Preserved activity, Simple cleanup, Synthesis, Technology
A comprehensive review of biocatalysis covering how the recent advances in engineering of enzymes, substrates, media and reactor design contributes to a sustainable chemistry development. The authors wrote that SpinChem® RBR technology “combines the advantages of a stirred tank with those of a packed bed” thus giving benefits by “circumventing mechanical attrition of the biocatalyst” while “mass transfer is greatly accelerated”. Keywords: Biotransformation, Immobilized enzymes, Organic molecules, Review, Scientific literature
Poster on a case study of applying the rotating bed reactor for the lipase-mediated stereoselective acetylation of a racemate amine as a model reaction for the manufacturing of pharmaceutical building blocks. The results showed that enzyme recycling and synthesis scale up was easy to achieve with preserved yield, enantioselectivity and catalytic activity. Keywords: Biotransformation, Easy handling, Immobilized enzymes, Quick recycling, Seamless scaleup
Photos showing how grinding caused by stirring of molecular sieves can be completely avoided by using a rotating bed reactor (RBR). Molecular sieves contained in a RBR for a 200 mL vessel can theoretically hold 0.23 moles of water. This allows synthesis of product in the range of 100 gram by ester condensation or drying of 25 litres of analytical grade organic solvent. Keywords: Easy handling, Molecular sieve, Purification, Simple cleanup, Synthesis, Technology, Water
The stable reaction environment in the EasyMax™ 102 Advanced synthesis workstation and the high flow rates through the SpinChem® RBR allowed for quick and convenient screening of different immobilized lipases to find the enzyme most suitable for further reaction optimization. Keywords: Biotransformation, Immobilized enzymes, Mettler-Toledo, Organic molecules, Rapid screening
Video illustrating how a mixture of red and blue dyes with different chemical properties can be selectively extracted onto different adsorbents within the same run using a rotating bed reactor (RBR). The dyes were separated based on ionic and hydrophobic interactions, respectively. Keywords: Cleantech, Decolouration, Extraction, Ion exchange, One-pot multistep, Organic molecules, Polymeric resin, Technology
Two dyes were selectively extracted onto different adsorbents within the same run using a SpinChem® rotating bed reactor (RBR) and an EasyMax™ 102 Advanced synthesis workstation. This experiment illustrates performing cascade reaction for one-pot multi-step synthesis. Keywords: Cleantech, Decolouration, Extraction, Ion exchange, One-pot multistep, Organic molecules, Polymeric resin, Technology
Blue dye was removed from a highly viscous liquid using a SpinChem® RBR S2 in an EasyMax™ 102 Advanced Synthesis Workstation. Monitoring of the reaction was easily recorded as no freely suspended ion exchange resin beads or resin debris interfered with the readings. This demonstrates that the RBR technology is extremely well suited for in-line monitoring. The viscosity of the solution was determined to ca 230 cP at 25°C, showing that it is possible to absorb dye even from a highly viscous solution. Keywords: Decolouration, Extraction, Ion exchange, Mettler-Toledo, Viscous solutions
Correlation data between extracted anthocyanidins/ anthocyanins vs time, temperature, and ethanol concentration was collected and analyzed. RBR extraction was deemed advantageous, in the authors’ own words: “The RBR was better than traditional extraction and 16 min sufficed.” Bilberry press cake is the major by-product from the production of bilberry juice. To valorize the press cake, the authors describe their work to extract antioxidant antocyanidins/ antocyanins from the cake. Different solvent compositions were compared as well as traditional extraction vs extraction by use of RBR. The methods used were as follows: “To summarize, the compared extraction methods were as follows: 1. Traditional extraction using different concentrations of ethanol dissolved in water, different masses of material, and different temperatures. 2. RBR extraction using different concentrations of ethanol dissolved in water, different masses, and temperatures. 3. RBR extraction using two-phase system, method 3 only mass and temperature were changed. 4. RBR extraction using two-phase system method 4, only mass and temperature were changed.”
This website uses cookies to ensure you get the best experience on our website. If you continue browsing, you agree to the privacy policy.