Application 1008
Activated carbon decolorization, fast and without filtration

Activated carbon is a common choice for removing impurities or capturing compounds from a product batch. However, the carbon may itself foul the product and be difficult to separate. The rotating bed reactor offers a clean way to deploy activated carbon that removes the need for time-consuming filtration and extends the lifetime of the solid phase.  

Application 1012
Flexible deployment with the plug-in rotating bed reactor

The rotating bed reactor (RBR) is a combined tool for chemical transformations and liquid transfer operations, reducing or eliminating the need for external pumps. Filled with a catalyst or adsorbent, and rotated by a motor, the RBR brings the liquid to be processed in contact with the solid-phase at high flow rates. Due to the high flow rate generated, the RBR can not only treat the liquid in the reaction vessel, but also transfer it into the vessel for processing.

Application 1007
Automatic processes for efficient production

Automation of large-scale processes is often a requirement for economically viable chemical processes. The benefits of scale are best harvested at high throughputs and 24/7 operation. This leads to the demand for process automation, and the elimination of hands-on work.

Application 1014
Biocatalysis by immobilized enzymes in a rotating bed reactor

Time lapse video showing how straightforward it is to use immobilized enzymes in a rotating bed reactor. A substrate giving a yellow coloured product was used to follow the reaction progress of an ester hydrolysis by an immobilized lipase. This substrate is commonly used to screen and characterize lipases.

Application L1704
Biocatalysis engineering: the big picture

Roger A. Sheldon and Pedro C. Pereira Chem. Soc. Rev., 2017, 46(10), pp. 2678-2691.

Application L1702
CFD modeling of flow and ion exchange kinetics in a rotating bed reactor system

Hilde Larsson, Patrick Alexander Schjøtt Andersen, Emil Byström, Krist V. Gernaey, and Ulrich Krühne Ind. Eng. Chem. Res., 2017, 56, 14, pp. 3853-3865.

Application 1035
Dramatically improved deionization with a rotating bed reactor

Removing ions from liquids is common in industry and society. Ions are remediated in applications ranging from the production of pharmaceuticals to the treatment of communal waste streams. Likewise, the nuclear energy sector deals with the removal of ionic radioactive substances from water on a daily basis.

Application 1024
Decolourization more efficient in rotating bed reactor than in fixed bed reactor

A fixed bed reactor (FBR), also known as a packed bed reactor or column, is a traditional technology for processes such as adsorption or heterogeneous catalysis. Achieving the required level of purification or conversion means running the liquid through the reactor at a sufficiently low flow rate, and the throughput of a fixed bed reactor is therefore often limited.

Application 1006
Rotating bed reactor faster than stirred tank reactor for a mass transfer limited reaction

Mass transfer limited reactions can create problems for applications like the synthesis of chemical products or the manufacture of active pharmaceutical ingredients. Poor yields, high side-product formation or impractically long reactions are potential issues. Efficient reactor design can greatly improve the mass transfer and remove the limitation to a minimum.

Application 1004
High-viscosity applications made faster

Liquids with high viscosity create problems for heterogeneous applications in traditional reactors. Packed bed reactors (columns) suffer from huge back pressures, and stirred tank reactors (STR) exhibit reduced reaction rates due to poor mixing. Both issues lead to longer processing times and expensive operations.

Application 1031
Decolourization in an IBC tank using the ProRBR IBC add-on

Adsorption of methylene blue (3 g, 5 mg/L) onto Purolite® NRW1160 (4.2 L) placed in a SpinChem® S5 RBR operated at 147 rpm. The SpinChem® S5 RBR was placed within a 600 L IBC tank, using the ProRBR IBC add-on, where the tank was filled with water. The data was acquired using a UV-VIS spectrophotometer.  

Application 1030
Viscous solutions decolourized using a rotating bed reactor and a stirred tank reactor

Decolorization, pesticide remediation, catalysis, and many other applications involve dealing with viscous liquid that needs to be modified in some way. The rotating bed reactor presents an efficient way to treat viscous liquids, without the challenges of conventional reactors.

Application 1034
Decolourization using 79 L of activated carbon in a 7000 L vessel

A large scale decolourization experiment using the SpinChem® rotating bed reactor (RBR) S100, packed with 79 L of activated carbon. The vessel contained 7000 L of water with added methylene blue dye. In under 40 minutes, 95% of the initial concentration of methylene blue was removed from the water, which shows that the RBR S100 can achieve fast reaction times in large scale processes.

Application 1003
Improving reactions in emulsions using a rotating bed reactor

When working with an emulsion (and particularly with a heterogeneous catalyst) the mass transfer between the phases is critical. Insufficient mixing leads to lower interfacial area per volume, and in turn to poor mass transfer across the phases.

Application Brochure
Mass transfer revolutionized

The SpinChem rotating bed reactor (RBR) can eliminate poor mass transfer in heterogeneous reactions during chemical syntheses and biotransformations, preserve catalyst activity, and facilitate recycling of solid phases. This brochure presents our technology and its applications.

Application L2102
New frontiers in enzyme immobilisation: Robust biocatalysts for a circular bio-based economy

Roger A. Sheldon, Alessandra Basso, and Dean Brady Chem. Soc. Rev., 2021, 50(10), pp. 5850-5862.

Application 1045
Pesticide remediation in extracts and oils

Pesticide residue can ruin a batch of a botanical extract, creating large problems for producers. Curated adsorbents, specifically chosen for your situation, can be used to remediate the pesticides. With a rotating bed reactor, you are equipped to respond to contaminants showing up on your test results.

Application L1705
Role of biocatalysis in sustainable chemistry

Roger A. Sheldon and John M. Woodley Chem. Rev., 2018, 118(2), pp. 801-838.

Application 1032
Rotating bed reactor for immobilized enzymatic reactions

This case study presents a lipase-mediated stereoselective acetylation of a racemic amine in a rotating bed reactor.

Application 1010
Rotating bed reactors completely avoid grinding of molecular sieves

When using of solid-phase catalysts or adsorbents in reactors, the physical degradation of the materials is a common problem. The traditional stirred tank reactor inflicts mechanical damage to the particles, which causes attrition, fines that are difficult to separate, and loss of the functionality of the solid-phase.

Application 9002
Screening of Immobilized Enzymes – Fast and Convenient Reaction Optimization

The stable reaction environment in the EasyMax™ 102 Advanced synthesis workstation and the high flow rates through the SpinChem® RBR allowed for quick and convenient screening of different immobilized lipases to find the enzyme most suitable for further reaction optimization.

Application 1044
Simple scale-up using flexible reactors

Research and development quickly takes new directions, and the requirements on a laboratory may vary with every new project. Limiting yourself to equipment with a narrow scope of conditions and applications may become expensive, since new equipment must be acquired for anything out of scope. With budgets quickly consumed by other projects, the need for new equipment may mean significant delays and a reduced capability to take on emerging opportunities.

Application 1009
Multistep synthesis or simultaneous extraction simplified in a rotating bed reactor

The synthesis of products, such as active pharmaceutical ingredients (APIs), often involves multiple steps using heterogeneous catalysts or adsorbents. Thus, the simultaneous use of multiple solid phases either during synthesis or downstream processing is frequently highly advantageous.

Application 9003
Simultaneous selective decolouration – Illustrating a concept for cascade reactions

Two dyes were selectively extracted onto different adsorbents within the same run using a SpinChem® rotating bed reactor (RBR) and an EasyMax™ 102 Advanced synthesis workstation. This experiment illustrates performing cascade reaction for one-pot multi-step synthesis.

Application L2005
Solvent and rotating bed reactor extraction with one- and two-phase solvents applied to bilberries (Vaccinium myrtillus) for isolating valuable antioxidants

Josefina Nyström, Ulla-Britt Östman, Torgny Mossing, Leif Hed, and Paul Geladi Food Anal. Methods, 2020, 13, pp. 933-941.

Application 9004
Treatment of Viscous Solutions – Simple Extraction and In-line Monitoring

Blue dye was removed from a highly viscous liquid using a SpinChem® RBR S2 in an EasyMax™ 102 Advanced Synthesis Workstation. Monitoring of the reaction was easily recorded as no freely suspended ion exchange resin beads or resin debris interfered with the readings. This demonstrates that the RBR technology is extremely well suited for in-line monitoring. The viscosity of the solution was determined to ca 230 cP at 25°C, showing that it is possible to absorb dye even from a highly viscous solution.

Application 1050
Lipase-catalyzed hydrolysis in 750 L using a rotating bed reactor

Biocatalysis offers many benefits in the production of chemicals and active pharmaceutical ingredients. One major challenge has been the deployment of immobilized enzymes in an efficient way on large scale. The rotating bed reactor offers a convenient way to scale a biocatalytic process.

Application 1051
How the loading of solids influences reaction speed

Sometimes you don’t want to pack the entire rotating bed reactor full with your solid-phase material. Fully loading might simply be wasteful, or you may want to experiment with your reaction conditions. But how does the amount of solids in the rotating bed reactor influence the reaction performance? Can you use only 10% of the full capacity?

Application 1053
Phenol scavenging using ion-exchange resin

Scavenging of soluble undesirable compounds and substances onto solid phase is used in a wide range of applications. In this example, a rotating bed reactor (RBR) is used to capture low concentrations of a phenol onto readily available Strong Anion Exchange (SAX) resin as a scavenger.

Application L2104
Compartmentalization in biocatalysis

Robert Kourist and Javier González‐Sabín In: Biocatalysis for Practitioners: Techniques, Reactions and Applications

Application L2111
Streamlining design, engineering, and applications of enzymes for sustainable biocatalysis

Roger A. Sheldon and Dean Brady ACS Sustainable Chem. Eng., 2021, 9(24), pp. 8032–8052.

Application L2114
Practical multienzymatic transformations: Combining enzymes for the one‐pot synthesis of organic molecules in a straightforward manner

Jesús Albarrán‐Velo, Sergio González‐Granda, Marina López‐Agudo, and Vicente Gotor‐Fernández In: Biocatalysis for Practitioners: Techniques, Reactions and Applications

Application L2106
Interaction of intrinsic kinetics, catalyst durability and internal mass transfer in the oxidation of sugar mixtures on gold nanoparticle extrudates

Maria Herrero Manzano, Kari Eränen, Kari, Adriana Freites Aguilera, Johan Wärnå, Sebastian Franz, Markus Peurla, Juan García Serna, Dmitry Murzin, and Tapio Salmi Ind. Eng. Chem. Res., 2021, 60(18), pp. 6483-6500.

Application L2008
Probing batch and continuous flow reactions in organic solvents: Granulicella tundricola hydroxynitrile lyase (GtHNL)

José Coloma, Yann Guiavarc'h, Peter-Leon Hagedoorn, and Ulf Hanefeld Catal. Sci. Technol., 2020, 10(11), pp. 3613-3621.

Application L2208
Process intensification in oxidative biocatalysis

Guillem Vernet, Markus Hobisch, and Selin Kara Curr. Opin. Green Sustainable Chem., 2022, 38, 100692.

Application L2310
Large scale production of vanillin using an eugenol oxidase from Nocardioides sp. YR527

Daniel Eggerichs, Kathrin Zilske, and Dirk Tischler Mol. Catal., 2023, 546, 113277.

Application L2311
New enzymatic reactor designs: From enzymatic batch to 3D microreactors and monoliths

Kim Shortall, Katarzyna Szymańska, Cristina Carucci, Tewfik Soulimane, and Edmond Magner In: Biocatalyst Immobilization, Foundations and Applications, 2022

Privacy Policy

This website uses cookies to ensure you get the best experience on our website. If you continue browsing, you agree to the privacy policy.