Pharmaceuticals and Cosmetics

The importance of modern medicine and pharmaceuticals is hard to overestimate. During the history of humankind, save for the last blink of an eye, one could expect a 50/50 chance of dying from an infection - grim odds. The situation with infections changed dramatically for the better from World War I and onwards. The major killers today: circulatory diseases, cancer, and respiratory diseases were of minimal concern for our hunter-gatherer ancestors due to a different lifestyle and life expectancy. However, modern medicine has made fantastic accomplishments to keep up with today’s need, and more effort and progress will be needed over the foreseeable future.

SpinChem can trace its roots back to the fine chemical and pharmaceutical space - starting out with transition metal catalysts before pivoting to develop the rotating bed reactor (RBR). Pharmaceutical industry was then the primary business area. And continues to be a very important area when developing the RBR. Today, biocatalysts have superseded chemocatalysts as the most used heterogeneous catalyst in RBR:s in Pharmaceutical industry.

From lab to production

In the last few years, SpinChem has developed larger and larger RBR:s. As of today, there is nothing to indicate that there is an upper limit in size for the rotating bed reactor principle, consequently we will continue to develop even larger models as time and demand permits. Currently, the range of RBR models goes from 28 ml to 100 L solid phase. The corresponding liquid phase volume is completely application dependent and thus not listed for the RBR models larger than lab scale. The desired solid-to-liquid ratio will govern what size RBR is suitable, anywhere from tenths of percent to fractions of one percent has been used. When using heterogeneous catalysts, the activity of the catalyst and allowed reaction time will determine the loading. Similarly, when using adsorbents, allowed time is a factor as well as the capacity of the adsorbent in relation to the amount of solutes.

In the vessel

Most of the organic chemistry reactions and processes that are known may be relevant tools in the toolbox for the development and production of small-molecule pharmaceuticals. RBR technology may be used in the production of biomolecule-based therapeutics, but it will be discussed elsewhere. Briefly, an RBR can be used in these categories of processes: biocatalysis, chemocatalysis, non-catalytic reactions including solid-phase peptide synthesis, and work-up/ downstream processing.

Biocatalysis

The selection of commercially available enzymes and possibilities to acquire custom-developed enzymes has exploded in the last few years. Enzymes from many classes are available in immobilized form, e.g. peptidases/amidases, lipases/ esterases, oxidoreductases, and aminotransferases.  The activity and stability under non-physiological conditions is remarkable in many cases, which has allowed to make them a relevant or even superior alternative to classical chemical catalysis in commercial processes. In Pharma, perhaps the high regio- and stereoselectivity that enzymes may offer are even more interesting properties allowing cleaner reaction steps or alternative routes relative to chemical synthesis.

Chemocatalysis

Classical chemical catalysis has not stood still either. Saying that the emergence of transition metal catalysis has revolutionized the field is probably not overstating it. Named reactions such as Suzuki, Stille, Grubbs, Heck, Negishi, Sonogashira, and Grignard to name a few have been around long enough to be considered parts of an organic chemist’s basic toolbox. With immobilized transition metal complexes, these reactions are available in RBR, e.g. our partner Reaxa offers alternatives in their EnCat line.

A more recent development is seen with organocatalysis, which was awarded the Nobel Prize in chemistry in 2021. Organocatalysts are available in immobilized form, we look forward to the first application in an RBR.

Perhaps the most straight-forward heterogeneous chemocatalyst is ion-exchange beads for acidic and basic catalysis.

The final example of chemocatalysis here, and also the most requested is palladium-catalyzed hydrogenation. Regular Pd/C is in powder-form and too fine for an RBR. However, there are Pd(0)-catalyst and granulated Pd/C to use from different suppliers. SpinChem currently does not offer pressurized hydrogenation vessels, which does not prevent a customer from installing an RBR in such a vessel. Also, transfer hydrogenation has been proven to work in RBR, offering a convenient and safe alternative to hydrogen gas.

Stoichiometric reagents

As for non-catalytic applications of RBR, the most common are ion-exchange beads and drying by molecular sieves. There are, however, a large selection of commercially available immobilized reagents. As far as we know, immobilized reagents are yet to be utilized in an RBR. Presumably, the relatively high cost per capacity offered is preventing widespread use. For the right application, the cost may be recouped in easier downstream processing.

Solid phase peptide synthesis

Carrier beads, such as Merrifield, Wang, and more recent developments, for solid-phase peptide synthesis may be considered a case of stoichiometric reagents suitable for RBR. The possibility to save solvent in these processes are obvious by the improved liquid flow rates through the packed bed compared to other technologies.

Downstream processing

Transition-metal catalysis was mentioned above. There is a risk that a small amount of the immobilized metal catalyst has leached into the solution during reaction. A good method to remove the often toxic heavy metal ions from the reaction product is a metal scavenging resin. The selection of heterogeneous scavengers is good, ranging from neutral to IEX-based, organic to inorganic backbone, and more general to more specific.

Perhaps less common in use, there are scavengers for selected organic compounds based on complementary electrophilic-nucleophilic reactivity, e.g. aldehyde-amine and Michael acceptor-thiol.

Adjusting pH during workup is a very common procedure and IEX resins are an option for doing this, also offering a way to produce less salt in the vessels during workup.

We would like to include treatment of waste streams in the context of downstream processing. It may make environmental and/or economical sense to treat your own waste streams locally before discharge or destruction. At the production site, the waste streams are contained, concentrated, and this is likely where the most knowledge about the content is found. Where large, costly, or specialized treatment equipment is needed, it may make more sense to transport to a common waste treatment site. Whether the waste stream contains excess dye from clothing manufacture or API precursors from pharmaceuticals production, a simple activated carbon treatment may be sufficient to make the waste stream acceptable for discharge. Best case scenario environmentally and financially, successfully treating the waste stream whether it is water or organic solvent, will allow it to be re-used in the process.

Ideally,  the waste streams  can be turned into a resource by extracting residual amounts of valuable components. Two examples comes from the pharmaceutical industry: scavenging and re-use of transition metals (e.g. palladium, iridium) from reaction waste after chemical TM-catalysis and recovery of API:s and precursors to API:s in small, residual concentrations from reaction waste or purification step waste. In both examples, the transition metal and API precursor is likely to be toxic in the wrong place (e.g. aquatic life) but valuable when recovered in pure form.

Application L1701
A novel hierarchically structured siliceous packing to boost the performance of rotating bed enzymatic reactors

Katarzyna Szymańska, Klaudia Odrozek, Aurelia Zniszczoł, Wojciech Pudło, and Andrzej B. Jarzębski Chem. Eng. J., 2017, 315, pp. 18-24.

Application 1008
Activated carbon decolorization, fast and without filtration

Activated carbon is a common choice for removing impurities or capturing compounds from a product batch. However, the carbon may itself foul the product and be difficult to separate. The rotating bed reactor offers a clean way to deploy activated carbon that removes the need for time-consuming filtration and extends the lifetime of the solid phase.  

Application L1801
Advanced oxidation process for the removal of ibuprofen from aqueous solution: A non-catalytic and catalytic ozonation study in a semi-batch reactor

Soudabeh Saeid, Pasi Tolvanen, Narendra Kumar, Kari Eränen, Janne Peltonen, Markus Peurla, Jyri-Pekka Mikkola, Andreas Franz, and Tapio Salmi Appl. Catal. B, 2018, 230, pp. 77-90.

Application 1012
Flexible deployment with the plug-in rotating bed reactor

The rotating bed reactor (RBR) is a combined tool for chemical transformations and liquid transfer operations, reducing or eliminating the need for external pumps. Filled with a catalyst or adsorbent, and rotated by a motor, the RBR brings the liquid to be processed in contact with the solid-phase at high flow rates. Due to the high flow rate generated, the RBR can not only treat the liquid in the reaction vessel, but also transfer it into the vessel for processing.

Application 1007
Automatic processes for efficient production

Automation of large-scale processes is often a requirement for economically viable chemical processes. The benefits of scale are best harvested at high throughputs and 24/7 operation. This leads to the demand for process automation, and the elimination of hands-on work.

Application 1014
Biocatalysis by immobilized enzymes in a rotating bed reactor

Time lapse video showing how straightforward it is to use immobilized enzymes in a rotating bed reactor. A substrate giving a yellow coloured product was used to follow the reaction progress of an ester hydrolysis by an immobilized lipase. This substrate is commonly used to screen and characterize lipases.

Application L1704
Biocatalysis engineering: the big picture

Roger A. Sheldon and Pedro C. Pereira Chem. Soc. Rev., 2017, 46(10), pp. 2678-2691.

Application 1023
Biocatalysis in rotating bed reactors - from screening to production

Enzyme screening is an important step in the development of a biocatalytic application. The behaviour of the biocatalyst is often hard to predict, meaning that different combinations of materials and reaction conditions need to be tested.

Application L1604
Catalytic hydrogenation of d-xylose over Ru decorated carbon foam catalyst in a SpinChem® rotating bed reactor

Tung Ngoc Pham, Ajaikumar Samikannu, Anne-Riikka Rautio, Koppany L. Juhasz, Zoltan Konya, Johan Wärnå, Krisztian Kordas, and Jyri-Pekka Mikkola Top. Catal., 2016, 59, pp. 1165-1177.

Application L1702
CFD modeling of flow and ion exchange kinetics in a rotating bed reactor system

Hilde Larsson, Patrick Alexander Schjøtt Andersen, Emil Byström, Krist V. Gernaey, and Ulrich Krühne Ind. Eng. Chem. Res., 2017, 56, 14, pp. 3853-3865.

Application 9005
Palladium catalyzed Suzuki couplings in a Mettler-Toledo EasyMax™ 102

Heterogeneous catalysis can be an effective tool for chemical synthesis, particularly in the discovery and development of pharmaceutical ingredients. The handling of these solid catalysts is sometimes challenging as it leads to more unit operations in the factory scale, as well as introduces additional work-up in the laboratory.

Application 1035
Dramatically improved deionization with a rotating bed reactor

Removing ions from liquids is common in industry and society. Ions are remediated in applications ranging from the production of pharmaceuticals to the treatment of communal waste streams. Likewise, the nuclear energy sector deals with the removal of ionic radioactive substances from water on a daily basis.

Application 1024
Decolourization more efficient in rotating bed reactor than in fixed bed reactor

A fixed bed reactor (FBR), also known as a packed bed reactor or column, is a traditional technology for processes such as adsorption or heterogeneous catalysis. Achieving the required level of purification or conversion means running the liquid through the reactor at a sufficiently low flow rate, and the throughput of a fixed bed reactor is therefore often limited.

Application 1006
Rotating bed reactor faster than stirred tank reactor for a mass transfer limited reaction

Mass transfer limited reactions can create problems for applications like the synthesis of chemical products or the manufacture of active pharmaceutical ingredients. Poor yields, high side-product formation or impractically long reactions are potential issues. Efficient reactor design can greatly improve the mass transfer and remove the limitation to a minimum.

Application 1004
High-viscosity applications made faster

Liquids with high viscosity create problems for heterogeneous applications in traditional reactors. Packed bed reactors (columns) suffer from huge back pressures, and stirred tank reactors (STR) exhibit reduced reaction rates due to poor mixing. Both issues lead to longer processing times and expensive operations.

Application 1031
Decolourization in an IBC tank using the ProRBR IBC add-on

Adsorption of methylene blue (3 g, 5 mg/L) onto Purolite® NRW1160 (4.2 L) placed in a SpinChem® S5 RBR operated at 147 rpm. The SpinChem® S5 RBR was placed within a 600 L IBC tank, using the ProRBR IBC add-on, where the tank was filled with water. The data was acquired using a UV-VIS spectrophotometer.  

Application 1030
Viscous solutions decolourized using a rotating bed reactor and a stirred tank reactor

Decolorization, pesticide remediation, catalysis, and many other applications involve dealing with viscous liquid that needs to be modified in some way. The rotating bed reactor presents an efficient way to treat viscous liquids, without the challenges of conventional reactors.

Application 1034
Decolourization using 79 L of activated carbon in a 7000 L vessel

A large scale decolourization experiment using the SpinChem® rotating bed reactor (RBR) S100, packed with 79 L of activated carbon. The vessel contained 7000 L of water with added methylene blue dye. In under 40 minutes, 95% of the initial concentration of methylene blue was removed from the water, which shows that the RBR S100 can achieve fast reaction times in large scale processes.

Application 1033
Deionizing 7000 L of tap water using the SpinChem® RBR S100

The SpinChem® rotating bed reactor (RBR) S100, with a solid phase capacity of 100 L, was used to deionize 7000 L of tap water. The RBR S100 was operating at 160 rpm and filled with 36.5 L of mixed bed ion exchange resin. The results show that the RBR S100 can efficiently process large liquid volumes. As shown by the successful deionization, the performance of the RBR remains high even when it is partially filled, which proves the extreme robustness of the RBR technology.

Application 1021
Automatic loading and unloading of a production scale rotating bed reactor

The separation of a heterogeneous catalyst, an adsorbent, or an ion-exchange resin from a liquid product is a time-consuming unit operation that often makes the use of these materials impractical. The rotating bed reactor is a more efficient technology for deploying catalysts for manufacturing or adsorbents for purification.

Application 1003
Improving reactions in emulsions using a rotating bed reactor

When working with an emulsion (and particularly with a heterogeneous catalyst) the mass transfer between the phases is critical. Insufficient mixing leads to lower interfacial area per volume, and in turn to poor mass transfer across the phases.

Application L1301
Efficient biocatalysis with immobilized enzymes or encapsulated whole cell microorganism by using the SpinChem reactor system

Hendrik Mallin, Jan Muschiol, Emil Byström, and Uwe T. Bornscheuer ChemCatChem, 2013, 5, pp. 3529-3532.

Application 1002
Efficient synthesis of chiral lactones by encapsulated cells in a rotating bed reactor

Whole cell biocatalysis is powerful, but not straightforward. One way of utilizing whole cells is to encapsulate them in a matrix such as alginate to make them easier to separate from a reaction mixture. However, alginate beads are not mechanically stable enough to be packed into columns and are easily destroyed in stirred tank reactors (STR). This makes enzyme recycling ineffective, at the same time as mass transfer limitations may prevail.

Application 1028
Enzyme immobilization screening using rotating bed reactors

Finding the optimal chemistry and solid-phase material for immobilization of enzymes relies heavily on trial and error. The right resin will ensure satisfactory immobilization yield, as well as high activity and stability of the enzyme.

Application L2213
Impact of critical parameters influencing enzymatic production of structured lipids using response surface methodology with water activity control

Ariana Causevic, Eimantas Gladkauskas, Kim Olofsson, Patrick Adlercreutz, and Carl Grey Biochem. Eng. J., 2022, 187, 108610.

Application 1037
In-tank deployment of large scale rotating bed reactor

How can this process be scaled up? This is perhaps the most important question to consider when developing a chemical process. If it cannot be done on large scale, all the time and resources invested in laboratory work will be unrewarded. Pumping liquids through massive columns or separating solids from a large batch can be unsurmountable challenges that bring a halt to a new project before it has even left the starting blocks.

Application L1903
L-Asparaginase production in rotating bed reactor from Rhizopus microsporus IBBL-2 using immobilized Ca-alginate beads

Anup Ashok and Santhosh Kumar Devarai 3 Biotech, 2019, 9(9), 349.

Application L1402
Lipase catalyzed regioselective lactamization as a key step in the synthesis of N-Boc (2R)-1,4-oxazepane-2-carboxylic acid

Carl-Johan Aurell, Staffan Karlsson, Fritiof Pontén, and Søren M. Andersen Org. Process Res. Dev., 2014, 18(9), pp. 1116-1119.

Application Brochure
Mass transfer revolutionized

The SpinChem rotating bed reactor (RBR) can eliminate poor mass transfer in heterogeneous reactions during chemical syntheses and biotransformations, preserve catalyst activity, and facilitate recycling of solid phases. This brochure presents our technology and its applications.

Application L1602
Modularized biocatalysis: Immobilization of whole cells for preparative applications in microaqueous organic solvents

Jochen Wachtmeister, Philip Mennicken, Andreas Hunold, and Dörte Rother ChemCatChem, 2016, 8, pp. 607-614.

Application L2117
Multi‐enzyme cascade reaction in a miniplant two‐phase‐system: Model validation and mathematical optimization

Jens Johannsen, Francesca Meyer, Claudia Engelmann, Andreas Liese, Georg Fieg, Paul Bubenheim, and Thomas Waluga AIChE J., 2021, 67(4), e17158.

Application L2102
New frontiers in enzyme immobilisation: Robust biocatalysts for a circular bio-based economy

Roger A. Sheldon, Alessandra Basso, and Dean Brady Chem. Soc. Rev., 2021, 50(10), pp. 5850-5862.

Application L2110
Process design of a continuous biotransformation with in situ product removal by cloud point extraction

Oliver Fellechner and Irina Smirnova Can. J. Chem. Eng., 2021, 99, pp. 1035-1049.

Application L2112
Production of hydroxytyrosol rich extract from Olea europaea leaf with enhanced biological activity using immobilized enzyme reactors

Alexandra V. Chatzikonstantinou, Αrchontoula Giannakopoulou, Stamatia Spyrou, Yannis V. Simos, Vassiliki G. Kontogianni, Dimitrios Peschos, Petros Katapodis, Angeliki C. Polydera, and Haralambos Stamatis Environ. Sci. Pollut. Res., 2022, 29, pp. 29624-29637.

Application L2115
Production of recombinant choline oxidase and its application in betaine production

S. Lokesha, Y. S. Ravi Kumar, P. S. Sujan Ganapathy, Prashant Gaur, and H. M. Arjun 3 Biotech, 2021, 11, 410.

Application L1703
Reaction engineering of biocatalytic (S)-naproxen synthesis integrating in-line process monitoring by Raman spectroscopy

M. Aßmann, A. Stöbener, C. Mügge, S. K. Gaßmeyer, L. Hilterhaus, R. Kourist, A. Liese, and S. Kara React. Chem. Eng., 2017, 2(4), pp. 531-540.

Application L1606
Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale

Jochen Wachtmeister and Dörte Rother Curr. Opin. Biotechnol., 2016, 42, pp. 169-177.

Application 1019
Recycling of immobilized enzymes using rotating bed reactor technology

Biocatalysis is a useful method for the synthesis of small chiral molecules, offering new possibilities for the synthesis of active pharmaceutical ingredients and other compounds. The rotating bed reactor has been established as an efficient way to deploy enzymes in production as well as research and development.

Application 9001
Recycling Novozym® 435 with a rotating bed reactor in the EasyMax™ 102

Investigating reactions can easily grow from an idea into very time-consuming projects, but the upside of properly understanding the reaction is great. The choice of equipment has a very large impact on the efforts required. The rotating bed reactor is a tool that unlocks the full potential of your Mettler-Toledo EasyMax™ 102 Advanced synthesis workstation for this development.

Application L1705
Role of biocatalysis in sustainable chemistry

Roger A. Sheldon and John M. Woodley Chem. Rev., 2018, 118(2), pp. 801-838.

Application 1032
Rotating bed reactor for immobilized enzymatic reactions

This case study presents a lipase-mediated stereoselective acetylation of a racemic amine in a rotating bed reactor.

Application 1025
Soft alginate beads used in a rotating bed reactor

Stirred vessels tend to damage soft heterogeneous catalysts, like enzymes immobilized in agarose or alginate beads, with activity loss and tedious workup as consequence. In a fixed bed reactor, these materials are easily compressed by the pressure gradient, leading to a loss of flow rate. Overcoming these challenges opens up the possibility to use biocatalysis as a tool for greener processes and more sustainable manufacturing.

Application 1010
Rotating bed reactors completely avoid grinding of molecular sieves

When using of solid-phase catalysts or adsorbents in reactors, the physical degradation of the materials is a common problem. The traditional stirred tank reactor inflicts mechanical damage to the particles, which causes attrition, fines that are difficult to separate, and loss of the functionality of the solid-phase.

Exploring the effectiveness of different types of activated carbon

Contaminations in liquids can often be removed using an adsorbent, such as granular activated carbon (GAC). The best choice of adsorbent is unique for each contaminant, and the effectiveness depends on many parameters. Failing to investigate these can lead to unnecessarily high material costs and long processing times.

Application 9002
Screening of Immobilized Enzymes in an EasyMax™ 102

Screening immobilized enzymes to find the best match with the substrate and reaction conditions can be a time-consuming process. The introduction of the solids in a stirred tank reactor leads to damage to the immobilized biocatalysts and makes filtration necessary.

Application 1027
Screening of immobilized lipases using rotating bed reactors

The SpinChem rotating bed reactor (RBR) has been proven to be a time and labor-efficient tool in the screening of biocatalysts. Here, we present the quick simultaneous screening of six different immobilized lipases for the esterification of lauric acid to propyl laurate using our pre-packed MagRBR lipase screening kit.

Application 1044
Simple scale-up using flexible reactors

Research and development quickly takes new directions, and the requirements on a laboratory may vary with every new project. Limiting yourself to equipment with a narrow scope of conditions and applications may become expensive, since new equipment must be acquired for anything out of scope. With budgets quickly consumed by other projects, the need for new equipment may mean significant delays and a reduced capability to take on emerging opportunities.

Application 1009
Multistep synthesis or simultaneous extraction simplified in a rotating bed reactor

The synthesis of products, such as active pharmaceutical ingredients (APIs), often involves multiple steps using heterogeneous catalysts or adsorbents. Thus, the simultaneous use of multiple solid phases either during synthesis or downstream processing is frequently highly advantageous.

Application 9003
Cascade reactions with a rotating bed reactor in an EasyMax™ 102

Synthesis typically involves multiple reaction steps and the isolation of intermediate products. Any incomplete conversion at the end of each step will compound to an overall lower yield. To make things worse, the work-up of each intermediate can be very time-consuming. This has made one-pot cascade synthesis (the simultaneous execution of multiple steps in a single reactor) a desirable target for chemists. This approach aims to minimize intermediate work-up, reduce the risk of material loss, and enhance overall process efficiency.

Application 1040
The importance of baffles in a reactor vessel

Can you use a rotating bed reactor (RBR) in any type of vessel? - Absolutely! Would the performance be higher with baffles in the vessel? - Definitely!

Application 1022
Transfer hydrogenation with catalyst recycling in a rotating bed reactor

Hydrogenation reactions using hydrogen gas are usually efficient and clean. Drawbacks are the safety issues of handling hydrogen gas, need for reactors made for pressurized reactions, and the necessity of vigorous stirring to make these solid-liquid-gaseous reactions work well.

Application 9004
Treatment of Viscous Solutions in a Mettler-Toledo EasyMax™ 102

Heterogeneous reactions involving viscous solutions put high demands on equipment and materials. Columns face high pressure drops and require powerful pumps and durable solid phase particles. Stirred tank reactors do not face the same problem, but the high liquid viscosity and low particle density will have a negative impact on reaction kinetics and require tedious filtration to separate the solids afterwards.

Application L2001
Using SpinChem rotating bed reactor technology for immobilized enzymatic reactions: A case study

Subhash Pithani, Staffan Karlsson, Hans Emtenäs, and Christopher T. Öberg Org. Process Res. Dev., 2019, 23(9), pp. 1926-1931.

Application L1706
Whole-cell cascade biotransformations for one-pot multistep organic synthesis

Shuke Wu and Zhi Li ChemCatChem, 2018, 10(10), pp. 2164-2178.

Application 1050
Lipase-catalyzed hydrolysis in 750 L using a rotating bed reactor

Biocatalysis offers many benefits in the production of chemicals and active pharmaceutical ingredients. One major challenge has been the deployment of immobilized enzymes in an efficient way on large scale. The rotating bed reactor offers a convenient way to scale a biocatalytic process.

Application 1054
Palladium catalyst recovery using scavenger resin

Catalyst recovery is an important step in downstream processing. Using an appropriate scavenger resin and a rotating bed reactor to deploy it, the recovery is straightforward and effective.

Application 1051
How the loading of solids influences reaction speed

Sometimes you don’t want to pack the entire rotating bed reactor full with your solid-phase material. Fully loading might simply be wasteful, or you may want to experiment with your reaction conditions. But how does the amount of solids in the rotating bed reactor influence the reaction performance? Can you use only 10% of the full capacity?

Application 1053
Phenol scavenging using ion-exchange resin

Scavenging of soluble undesirable compounds and substances onto solid phase is used in a wide range of applications. In this example, a rotating bed reactor (RBR) is used to capture low concentrations of a phenol onto readily available Strong Anion Exchange (SAX) resin as a scavenger.

Application L2202
Asymmetric hydrogenation of C = C bonds in a SpinChem reactor by immobilized old yellow enzyme and glucose dehydrogenase

Teng Ma, Weixi Kong, Yunting Liu, Hao Zhao, Yaping Ouyang, Jing Gao, Liya Zhou, and Yanjun Jiang Appl. Biochem. Biotechnol., 2022, 194, pp. 4999–5016.

Application L2301
Comparison of four immobilization methods for different transaminases

Tobias Heinks, Nicolai Montua, Michelle Teune, Jan Liedtke, Matthias Höhne, Uwe T. Bornscheuer, and Gabriele Fischer von Mollard Catalysts, 2023, 13(2), 300.

Application L2303
Amination of a green solvent via immobilized biocatalysis for the synthesis of Nemtabrutinib

Christopher K. Prier, Karla Camacho Soto, Jacob H. Forstater, Nadine Kuhl, Jeffrey T. Kuethe, Wai Ling Cheung-Lee, Michael J. Di Maso, Claire M. Eberle, Shane T. Grosser, Hsing-I Ho, Erik Hoyt, Anne Maguire, Kevin M. Maloney, Amanda Makarewicz, Jonathan P. McMullen, Jeffrey C. Moore, Grant S. Murphy, Karthik Narsimhan, Weilan Pan, Nelo R. Rivera, Anumita Saha-Shah, David A. Thaisrivongs, Deeptak Verma, Adeya Wyatt, and Daniel Zewge ACS Catal., 2023, 13(12), pp. 7707-7714.

Application L2004
Advanced oxidation process for degradation of carbamazepine from aqueous solution: influence of metal modified microporous, mesoporous catalysts on the ozonation process

Soudabeh Saeid, Matilda Kråkström, Pasi Tolvanen, Narendra Kumar, Kari Eränen, Jyri-Pekka Mikkola, Leif Kronberg, Patrik Eklund, Markus Peurla, Atte Aho, Andrey Shchukarev and Tapio Salmi Catalysts, 2020, 10(1), 90.

Application L2003
Pharmaceutical industry perspectives on flow chemocatalysis and biocatalysis

Laura Leemans Martin, Theo Peschke, Francesco Venturoni, and Serena Mostarda Curr. Opin. Green Sustainable Chem., 2020, 25, 100350.

Application L2104
Compartmentalization in biocatalysis

Robert Kourist and Javier González‐Sabín In: Biocatalysis for Practitioners: Techniques, Reactions and Applications

Application L2111
Streamlining design, engineering, and applications of enzymes for sustainable biocatalysis

Roger A. Sheldon and Dean Brady ACS Sustainable Chem. Eng., 2021, 9(24), pp. 8032–8052.

Application L2114
Practical multienzymatic transformations: Combining enzymes for the one‐pot synthesis of organic molecules in a straightforward manner

Jesús Albarrán‐Velo, Sergio González‐Granda, Marina López‐Agudo, and Vicente Gotor‐Fernández In: Biocatalysis for Practitioners: Techniques, Reactions and Applications

Application L2106
Interaction of intrinsic kinetics, catalyst durability and internal mass transfer in the oxidation of sugar mixtures on gold nanoparticle extrudates

Maria Herrero Manzano, Kari Eränen, Kari, Adriana Freites Aguilera, Johan Wärnå, Sebastian Franz, Markus Peurla, Juan García Serna, Dmitry Murzin, and Tapio Salmi Ind. Eng. Chem. Res., 2021, 60(18), pp. 6483-6500.

Application L2008
Probing batch and continuous flow reactions in organic solvents: Granulicella tundricola hydroxynitrile lyase (GtHNL)

José Coloma, Yann Guiavarc'h, Peter-Leon Hagedoorn, and Ulf Hanefeld Catal. Sci. Technol., 2020, 10(11), pp. 3613-3621.

Application L2304
Boosting the catalytic performance of a marine yeast in a SpinChem® reactor for the synthesis of perillyl alcohol

Silvia Donzella, Concetta Compagno, Francesco Molinari, Francesca Paradisi, and Martina Letizia React. Chem. Eng., 2023, 8(12), pp. 2963-2966.

Application L2305
Enzymatic synthesis of ascorbyl palmitate in a rotating bed reactor

Jessica Holtheuer, Luigi Tavernini, Claudia Bernal, Oscar Romero, Carminna Ottone, and Lorena Wilson Molecules, 2023, 28(2), 644.

Application L2306
Selective peroxygenase-catalysed oxidation of toluene derivatives to benzaldehydes

Yutong Wang, Niklas Teetz, Dirk Holtmann, Miguel Alcalde, Jacob M. A. van Hengst, Xiaoxiao Liu, Mengfan Wang, Wei Qi, Wuyuan Zhang, and Frank Hollmann ChemCatChem, 2023, 15(13), e202300645.

Application L2208
Process intensification in oxidative biocatalysis

Guillem Vernet, Markus Hobisch, and Selin Kara Curr. Opin. Green Sustainable Chem., 2022, 38, 100692.

Application L2209
Chemical wastes in the peptide synthesis process and ways to reduce them

Mahan Haji Abbasi Somehsaraie, Vaezeh Fathi Vavsari, Mohammad Kamangar, and Saeed Balalaie Iran. J. Pharm. Res., 2022, 21(1), e123879.

Application L2310
Large scale production of vanillin using an eugenol oxidase from Nocardioides sp. YR527

Daniel Eggerichs, Kathrin Zilske, and Dirk Tischler Mol. Catal., 2023, 546, 113277.

Application L2311
New enzymatic reactor designs: From enzymatic batch to 3D microreactors and monoliths

Kim Shortall, Katarzyna Szymańska, Cristina Carucci, Tewfik Soulimane, and Edmond Magner In: Biocatalyst Immobilization, Foundations and Applications, 2022

Application 1069
Cellulose-bead immobilized enzymes as biodegradable and renewable catalysts

Environmentally benign and safe synthesis is enabled by highly active biocatalysts. To bolster economic and ecological aspects, catalyst reuse is essential and achieved by heterogenization of otherwise soluble enzymes onto solid supports. Here, this is demonstrated on novel renewable and non-polluting cellulose beads.

Privacy Policy

This website uses cookies to ensure you get the best experience on our website. If you continue browsing, you agree to the privacy policy.